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Analysis and Synthesis of Tapered Microstrip

Transmission Lines
Masanori Kobayashi, Member, IEEE, and Narutoshi Sawada

Abstract–The input voltage reflection coefficient on a tapered

microstrip transmission line is analyzed and a new Fourier

transform pair is derived which introduces echo time and fre-

quency as variables. Calculations of the input reflection coeffi-

cient take into account the frequency dispersion-characteristics

of the effective permittivit y. An efficient method is proposed for

analysis and synthesis of microstrip tapers and numerical re-
sults are presented for microstrip exponential tapers and mi-

crostrip Tchebycheff tapers. The present paper is the first one
shown the frequency-dependent characteristics of reflection

coefficients.

I. INTRODUCTION

T APERED microstrip transmission lines are an in-

creasingly important part in the design of matching

networks, filters, couplers, circulators, etc., in MICS.

Consider the tapered microstrip transmission line, sup-

porting a non-TEM mode, shown in Fig. 1 which use as

a transformer to match a line of impedance 21 to a load

of impedance 22. When an electrical signal of frequency

u is transmitted in the + z direction, a portion of the signal

is reflected back to the sending point z = O. In analyzing

the reflection coefficient, the phase constant (3 and char-

acteristic impedance Z at position z are approximated as

those of a uniform line having the same cross-sectional

dimensions as the taper has at that position. The phase

constant /3 along the taper is expressed in terms of the

effective permittivity ~.ff (z, u) as shown by (1) in the next

section. The effective permittivity varies along the taper

because of a variation of the width of strip conductor along

the taper and has the frequency dispersion-characteristics.

In previous analysis, the characteristic impedance Z(z)

depends on only position z. In this case, it is well-known

(see [1]-[7] and references therein) that the Riccati equa-

tion holds for the voltage reflection coefficients p of the

taper. For the case of pz << 1 and e.~ = constant along

the taper, the reflection coefficient and the Fourier trans-

form pair were given in [6]. For the case of p2 << 1 and
EefT= ~eff(z), the reflection coefficients were calculated
numerically [1] and the pair of variables p and u used in

[6] were modified in [2].

The present paper derives another Fourier transform

pair introducing an echo time and frequency as variables
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Fig. 1. Tapered microstrip transmission line. (a) Cross-section. (b) z-de-

pendent configuration of strip conductor.

for the case of ~cf = e.f(.z). Furthermore, the reflection

coefficients are calculated numerically for the case of e~ff

– c~ff(z, ~). An efficient method for analysis and synthe-—

sis is derived and is applied to microstrip exponential ta-

pers and microstrip Tchebycheff tapers to show the valid-

ity of the present method for the case of position and

frequency-dependent effective permittivities.

II. FOURIER TRANSFORM PAIR HAVING ECHO TIME

AND FREQUENCY AS VARIABLES

The phase constant /3 of the tapered line shown in Fig.

1 is expressed in terms of a phase velocity v as follows:

/3 = @/v(z, @) (1)

where

V(2, 0) = c/ JEeff(z, ~) (2)

and c denotes velocity of light in free space.

Let a new variable ~ be introduced as follows:

!
z

1
T=2 — dz,

o TJ(z, u)
(3)

where ~ equals the traveling time for the case in which

an electrical signal of angular frequency u transmitted at

z = O travels along the line, reflects at position z, and

returns to the sending point at z = O. Therefore, let ~ be

called the echo time.

Using the variable ~, the Riccati equation gives the in-

put reflection coefficient at z = O, after some manual cal-
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culation:

(4)

where

!

L
2

rL = — dz.
o V(z, u)

(5)

This equation may be interpreted as the Fourier transform

of a function (1 /2) din (2/21)/d T, which is zero outside

the range O ~ ~ ~ 7~. It is to be noted tlhat no restrictions

of any kind have been imposed except p2 << 1.

For only the case of v (z) with e.ff (z), no dispersion, two

variables are independent each other anld so we can con-

sider the inverse Fourier integral as follows:

1 din (2/21) = ~

!

m

~ d? 27r -m
e ““7P d w. (6)

Equations (4) and (6) form a simple Fourier transform

pair.

III. REFLECTION COEFFICIENT OF EXPONENTIAL TAPER

Let us consider the exponenti~ tapered rnicrostrip

transmission line of length L as an example of the taper

shown in Fig. 1. For a match between two impedances,

21 and Zz, the characteristic impedance along the line can

be expressed as follows:

Z(Z) = 21 exp {(z/L) in (Zz/ZJ}. (7)

Substituting (7) into (4) gives the follc~wing equation:

[

TL
c In (~ /ZJ

p= e–.i~r exp {(z/L) in (22/21)} d~.
o 2L -

(8)

If the configuration of the taper, that is the shape ratio

w/h at position z along the taper, is given, the value of

Eeff(z, u) can be obtained using the dispersion formula
proposed in [10].

The relation between w/h and z/L, in turn, can be de-

termined from characteristic impedance Z in (7) and the

following relation for the characteristic impedance Z is

given by

Z = q/{(Co (w/h)/eO) ~Gff (w/h, O)} (9)

where q ( = _) denotes the intrinsic impedance of

free space and CO(w/h) denotes the 1ine capacitance per

unit length for the case of c = 1 and shape ratio w/h.

Using the results tabulated in [8] an approximate formula

of CO(w/h)/eO for the case of 0.1 ~ w/h s 0.7 can be

given by

CO(w/h)/eO = 0.4109 + ~5.940w/h + 0.4631. (lOa)

This small range for w/h was taken only for a simplicity

in the calculation since the dispersion formula for Ceff(z,

u) proposed in [10] was given in different forms for the

cases of w/h narrower and wider than 0.7. Also an ap-

proximate formula for eef(w/h, O) was given in [8]. For

~ = 8 and w/h ~ 4.4, it is given as

qff(w/h, O) = 4.5 + 1.832 exp [0.9282 loglo A

– 0.3367 {loglo A}z – 0.3189 {loglo A}3

– 0.0615 {log10 A}4] (lOb)

where

A = loglo (w/h/4.4).

For the case of ~ = 8, Z1 = 63.58 Q (w/h = 0.7 at z =

O), Zz = 117.99 Q (w/h = 0.1 at z = L), the resulting

relation between w/h and z/L is shown by the dashed

line in Fig. 7.

At this stage, all quantities needed to calculate numer-

ically the reflection coefficient pi ( = IP I) based on (4) are

known. Results obtained using these quantities are shown

by solid lines for parameter L/h = 1, 2, 5, 10 in Fig. 2.

These curves denote the reflection coefficients for the case

where the effective permittivity depends on both z and o.

These results are the first ones showing the frequency-

dependent characteristics of the reflection coefficients.

The dot-dashed line shown in Fig. 2 denote the reflec-

tion coefficients obtained by approximating the effective

permittivities by ~.ti (w/h, O), no dispersion. The dot-

dashed lines for all different L/h (= 1,2,5, 10) are nearly

coincident and cannot be distinguished from each other in

Fig. 2. The method of Pramanick and Bhartia [1] for the

case of ~,ff (w /h, O) gives results in agreement with the

dot-dashed line of Fig. 2.

Next, let us consider the exponential tapered microstrip

line without substrate, that is ~ = 1, where the impedance

Z along the taper is identical to the one shown in (7). For

this case, (4) can be evaluated analytically to give the fol-

lowing reflection coefficient:

pi = (1/2) h (z2/Zl) lsin eZ,/%1 (11)

where 6L denotes the electrical length and is given as

6L = ~7L (12)

rL = 2L/c. (13)

The results for L/h = 1,2, 5, 10 are shown by the dashed

lines in Fig. 2. In these cases the curves for different L/h
are identical.



1644 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 40, NO. 8, AUGUST 1992

0.2 -

%-

0.1 -

0
0 0.2

L+
O.fl 0.6

Fig. 2. Reflection coefficients for exponential microstrip tapers (e = 8, Z,
= 63.58, Z, = 117.99). Parameter denotes the normalized taper length
L/h. — for e.~(z, o). —-— for e, fl(z, O). ------ for Ccm= 1. The
calculating method by Pramanick and Bhartia [1] gives the same curves to

the ones shown by the dot-dashed line.

IV. ELECTRICAL LENGTH MATCHED PROCEDURE

In general, the electrical length 0~ can be obtained from

equation (12) with echo time ~~ given by (5). Fig. 3 il-

lustrates the reflection coefficients for all curves shown in

Fig. 2, where the electrical length 9~ is the abscissa. All

curves are nearly coincident and cannot be distinguished

from each other in Fig. 3.

The characteristics of reflection coefficients versus

electrical length are the same for all cases where the var-

iation of the normalized characteristic impedances

Z(z) /21 versus normalized position z/L are same. This

is valid even if the physical configuration of taper, the

physical length of taper, the operating frequency, the rel-

ative permittivity of substrate, and the frequency-depend-

ence of effective permittivity are different between the two

cases.

As a consequence, an efficient procedure can be applied

to the analysis and the synthesis of a taper. The main tasks

can be carried out for the cases of e = 1, in which both

analysis and synthesis are simple because of ~eff = 1 over

the taper. A flow chart for this procedure is shown in Fig.

4. The procedure is permitted only in the direction of the

arrow. Let it be called an electrical length matched pro-

cedure. The columns labeled by Ceff =- 1 and e~ff(z, u) in

Fig. 4 denote the cases of tapers with substrate of relative

permittivities with ~ = 1 and 6 # 1, respectively. Step

V 1 denote the z/L-dependence of the shape ratio w/h for
the taper of is = 11 Similarly, steps V2, V3, and V4 de-

note the z/L-dependence of the normalized characteristic

impedance Z(z) /21, the characteristics of the reflection

coefficient p, versus normalized frequency L/ Ao, and the

characteristics of the reflection coefficient pi versus elec-

trical length 0~, respectively.

On the other hand, steps D1, D2, D3, and D4 for the

0.2 -

~.

0.1 -

Oid!claz
o 7.0 q 14.0 21 0

Fig. 3. Reflection coefficients obtained taking abscissa in Fig. 2 by 9~. The
curves for all cases shown in Fig. 2 are in extremely good agreement and
cannot be distinguished from each other in the uresent figure. o, = O at 19~

=2nx(n=l, ~,3, ...).

Eeff=l ; GJf(z, w)
-------- . . ------ -------- -, ------ ------- . . . . . . . . . . . . . . . . . . ..

; EXPONENTIAL
TAPER

Fig. 4. Flow chart of electrical length matched procedure.

cases of the taper with c # 1 correspond to steps V 1, V2,
V3, and V4 for the cases of the taper of e = 1.

Two solid lines connecting steps V2 and D2 denote let-

ting the z /L-dependences of the normalized characteristic

impedance Z(z) /21 be matched between both steps. This

matching gives the same characteristics of the reflection

coefficient pi versus electrical length 6L at two steps V4

and D4. Conversely, the matching at two steps V4 and

D4 gives the same z/L-dependence of the normalized

characteristic impedance Z(z) /21 at two steps V2 and D2.
For the taper of c = 1, we can obtain any steps VI (I



KOBAYASHI AND SAWADA: SYNTHESIS OF TAPERED MICROSTRIP TRANSMISSION LINES 1645

# J) if an arbitrary step VJ is given because all steps have

the arrows of both directions. For the taper of e # 1, the

direct procedure from step D4 to step D2 is forbidden be-

cause there is no arrow in that directicm. This is due to

the non-existence of the inverse Fourier transform, for the

case of effective permittivity with dispersion.

However, we can obtain step D2 by using other indirect

procedure D4 = V4 - V3 - V2 = D2 when D4 is given.

In the next section, let us consider a Tchebycheff taper as

the example of this procedure and use itas a transformer

connecting a line of impedance Z1 to a load of impedance

Z’2.

V. ANALYSIS AND SYNTHESIS OF TCHEBYCHEFF TAPER

Let the Tchebycheff taper be composed of a tapered

microstrip transmission line with E = 8, 21 = 63.58 Q

(w/h = 0.7 at z = O), Zz = 117.990 (w/h = 0.1 at z

= L). The equality between steps V4 and D4 in the pres-

ent electrical length matched procedure (Fig. 4) proposes

us that the reflection coefficient for this, taper, which sup-

ports a non-TEM mode can be expressed using the fre-

quency response for a taper, which supports a TEM mode,

treated previously by Collin [7], as follows:

where

()

q Cos (T. G- @;/2)
F’(cJ) = In ~ (15)

cosh (CJO7~/2)

Pi = IPI (16)

pm = (1/2) In (~/Z1) /cosh (00 ~~/2). (17)

The pm in (17) denotes the tolerable reflection coefficient.

The COOdenotes the cutoff angular frequency of the taper

for this pm.

The characteristics of the reflection coefficient, pi, ver-

sus electrical length, 9~ ( = W-L), can be obtained using

equation (16) with a cutoff electrical length, CJO7~, yield-

ing a specified pm in (17). This means that step D4 and

namely step V4 can be given. We canl obtain straightfor-

ward the characteristics of reflection coefficient, Pi, ver-

sus normalized frequency, L/ Ao, by dividing electrical

length, 13~,at step V4 by 47r since ~,fl = 1. Fig. 5 shows

the results for pm = 0.1, 0.05, 0.01 as well as the result

for the exponential taper for a comparison. Multiplying

the abscissa in Fig. 5 by 47r gives th~e characteristics of

reflection coefficient pi versus electrical length 6L.

Fig. 6 shows the z/L-dependence of characteristic

impedance Z/Zl for microstrip Tchebycheff tapers ob-

tained by the calculation in accordance with the indirect

procedure (D4 = V4 + V3 * V2 = D2) shown in Fig.

4.

Now, the characteristic impedances have the same val-

ues at positions which have the same ~shape ratio w/h and

the same relative permittivity. This means that the curves

of the z/L-dependence of characteristic impedance and

Fig. 5. Reflection coefficients for the exponential microstrip taper and the

microstrip Tchebycheff tapers made of microstrip transmission lines of C.F

=1 (that is e = l’).
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Fig. 6. The z-dependence of normalized characteristic impedances Z(z) /2,
for exponential microstrip taper and microstnp Tchebycheff tapers. The pm

denotes the tolerable reflection coefficient.

the configuration for the exponential microstrip taper ob-

tained in the Section 111 can be used in the procedure be-

tween steps D 1 and D2. The configuration (step D 1) of

the Tchebycheff tapers shown in Fig. 7 was obtained by

the method based on this idea. Let us show its procedure

by the graphic explanation for the case of pm = 0.01 in

Figs. 6 and 7. The shape ratio w/h (mark@ in Fig. 7)

for the z/L (mark @) given in Fig. 6 can be obtained by

the procedure of@ * @ in Fig. 6 and subsequently @

- @in Fig. ‘7. The arrow pulled down from the point

with mark @) in Fig. 7 gives the z /L given first. The char-

acteristic impedance has discontinuous jumps at both

ends. The characteristic impedance at the center of taper

is equal to geometric mean between Z1 and 22. Fig. 8

shows the reflection coefficients (step D3) for microstrip
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Fig. 7. Thez-dependent configuration ofmicrostrip e;{ponential taper and

Tchebycheff tapers(e = 8).
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Fig. 8. Reflection coefficients formicrostrip Tchebycllefftapers(e =8)of
configurationp~ = 0.1 shown in Fig.7. Parameter denotes the normalized
taper length L/h. — for ee~(z, u). ---- for C.ti = 1 (this curve is fore
= 1 and is shown for a comparison).

Tchebycheff taper obtained taking abscissa 19Lin the re-
flection coefficient characteristics (step 114) by L/XO us-
ing OL= uTLwith ~Lofthe integration (5) substituted with
e~ff(z, O) for the configuration of the taper shown in Fig.
7. These results are the first to show the dispersion-depen-
dent characteristics of the reflection coefficients for the
Tchebycheff microstrip tapers. The dashled line denotes
the case of e = 1 (e.fl = 1) for a comparison.

VI. CONCLUSIONS

Introducing an echo time, a new Fourier transform pair
has been derived for the analysis of the input reflection
coefficient of a microstrip taper. Values of the reflection
coefficient of microstrip exponential tapers were obtained
treating the effective permittivity as being a function of

position and operating frequency. This is the first time
that the frequency-dependent characteristics of the effec-
tive permittivity have been presented. An efficient method
for the analysis and synthesis of Tchebycheff tapers was
proposed. Numerical results using this method were pre-
sented.
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